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ABSTRACT 

 
This paper is based on ongoing research on the steel industry (mainly in the UK, but with an international 
perspective) in the framework of the ESRC-funded ‘Waste of the World’ programme, which seeks to address 
issues of material flows, especially the generation of wastes, from a social sciences perspective. In this paper, 
we analyse the key factors structuring waste management decisions in the UK steel industry today through the 
case of ‘problem’ wastes arising at a major manufacturer’s plants. We discuss how some materials come to be 
construed as more problematical than others from a material and technological point of view, but also by taking 
into account organisational and legislative issues, in order to show that the construction of the ‘waste’ category 
needs to be envisioned as resulting from a matrix of socio-material causes.  
 
 
 
The steel industry has undergone profound corporate changes of late with high profile takeovers 
(Corus-Tata and Arcelor-Mittal) that are part of a (sometimes politically contentious) shift from the 
West to developing countries of the centre of gravity of the industry. This change is also illustrated by 
the rapid rise of China (and, increasingly, India) both as a consumer and producer of steel, and its 
increasing importance on the market for raw materials, where important changes are also taking shape 
(proposed takeover of Rio Tinto by BHP, Vale-Xstrata etc.). Steel is probably the material of the 
globalised world and its icons (the aeroplane, the cargo ship, the automobile), it is extremely flexible 
in its applications, and fits into the current discourse on ‘sustainability’ because it is recyclable (and 
fairly highly recycled). However, paradoxically, steel is more or less absent from research agendas in 
the social sciences: it tends to be neglected as an ‘old’, ‘dirty’ industry that has nothing to teach us 
and that we have nothing to say about. In this paper, we will show that this industry needs to be 
studied by the social sciences, as it can tell us a lot about the social, economic and environmental 
aspects of the transformation of materials and the production of wastes in the context of globalisation. 
The steel industry offers an opportunity to visualise flows of materials and their fates and connect 
them to the overarching dynamics structuring our world today. Likewise, we hope to show that the 
industry can also benefit not just from the raw input of technology, but also from a more reflexive 
approach supported by research in the social sciences: in other words, we would like to (modestly) 
make the case for greater collaboration between industry and the social sciences. 
We will first start with an overview of the steel industry and the production of steel, in order to frame 
the reflection in terms of flows of materials, and show how this can be formalised to convey the 
complexity of the processes involved in the industry, and the parts of the process where materials can 
become wastes. Then, in a second part, we will focus on specific materials that have come to be seen 
as problematical in the UK steel industry1: how and why do some materials become ‘problem 
wastes’? What does this tell us about wider dynamics of material flows and the social construction of 
the ‘waste’ category? Ultimately, what does it reveal about the factors structuring by-product and 
waste management in the industry today? 
 
 

                                                 
1 Due to the sensitive nature of some of the information and in order to comply with the ethical requirements of 
academic research, the results presented here are strictly anonymous. 
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PART I: THE (UK) STEEL INDUSTRY: MATERIAL FLOWS, PRODUCTION, AND 
WASTES 
 
In this first part, we aim to build a model of the (UK) steel industry today2 in order to understand 
flows of materials, as well as production, by-products, residues, and wastes.  
Of course, beyond steelmaking stricto sensu, there are other activities involved in the process of 
making steel, each with their by-products and wastes. For instance, there is cokemaking, with its 
associated dusts and gases, and the generation of large quantities of coke fines, as well as flows of 
contaminated water. There is also sintering, which generates highly toxic dusts and where dioxins are 
also a concern. Therefore, simply analysing the steps of steelmaking itself is not enough to understand 
the full impact of the production of steel or to get a complete picture of waste management in the 
industry. However, of course, studying all these aspects would be too vast an enterprise, so, while 
acknowledging these steps of the process and their contribution to overall waste production, we will 
gradually focus on the most problematical points of the production process, both within and without 
the steelmaking process itself. 

 
1. Materials and their fates : formalising flows 

 
We analyse here what happens to the materials in the production of steel: how they are transformed 
into products, by-products and wastes, based on the mass balance principle of ‘what comes in must 
come out’.  
 
a) The examples of the coke ovens and the sinter plant 
 
Let us look at two crucial steps of steelmaking, in order this time to identify more clearly what exactly 
is produced in each of these steps. By produced, we mean not only the desired (aimed-for) material at 
each step of the process (sinter, liquid iron, steel etc.) but also the by-products of each step, which, 
depending on whether it is reused or not, can, de facto, become ‘waste’, or start to migrate towards 
that category, via treatment, storage etc. For the moment, we can rely on a widely accepted definition 
of waste: ‘ a substance that a given agent does not, or does not intend to, reuse in the forseeable 
future’. Thus, stockpiling, even under the pretense of ‘future’ use, will be considered waste when that 
‘future’ use is not clearly defined given today’s technologies.  
If we look at integrated steelmaking, we can first focus on the coke plant. Coke is produced from the 
destructive distillation of coal at high temperatures. Large quantities of gases are emitted, namely CO, 
CO2, SO2, NO2 etc. However, a lot of this gas is actually reused, either at the coke plant itself, or 
circulated to other parts of the steel plant, such as the BF. CO, for instance, is burnt to produce the 
heat required. Also, large quantities of dust arise from the production of coke; however, a 
considerable proportion of this extemely abrasive coke dust (which, for the very same reason, seems 
to have evaded control methods) is reused via the sinter plant, to which we now turn.  

 
The sinter plant combines ore, coke and lime in sintered pellets that can be fed into the BF to enhance 
and stabilise its operation, ensuring optimal hot metal quality. The sinter plant produces large 
quantities of gases and toxic, heavy-metal-laden, dusts. However, the sinter plant also acts as a 
‘recycling’ plant as it were: dusts from other parts of the production process (cokemaking, BF, BOF, 
rolling...as well as dusts generated in the sinter plant itself), as long as they contain Fe, C and/or 
fluxing agents, can be recirculated in the sinter strand, thereby contributing to loop closure. Thus, 
although the sinter plant itself generates a lot of dusts, they are mainly reused in the sintering process, 
and the sinter plant can take on a lot of the by-product burden of the whole plant, as we shall see in 
more detail later.  
Therefore, such processes, although they do generate wastes and emissions and can be a concern, will 
not be the focus of our research, because they witness a lot of recirculation of their products in other 
parts of the process, and thus do not really pose a problem overall. 
                                                 
2 Research is based mainly on the UK steel industry, whilst taking international developments into account. 
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We now look in a more abstract way at the flows of materials in steelmaking: what (typically) enters a 
steel plant and the various parts of the production process, and how materials flow from one part to 
another. We draw here on the Materials Flows Analysis (MFA) grounded in industrial ecology, in 
order to formalise our approach: What average quantities of materials are produced at each step of the 
process? How do they circulate between different parts of the process? And how much eventually 
ends up in the ‘waste’ category, after having been a raw material, a by-product, or a residue? Indeed, a 
discussion of all these potentially confusing terms is necessary to understand how and why waste 
becomes waste- the biography of waste as it were-, through which steps, and how this is subject to 
historical and spatial variations linked to technologies, techniques, practices, but also the very 
material characteristics of the ‘stuff’ of steelmaking. 

 
b) Typical flows at plant level 
 
The following diagram (‘Typical flows in a steel plant’) shows the flows of materials from the 
different parts of the process, for a typical steel plant. It clearly shows both the recirculation and the 
loss of materials in the production process. What we notice with this diagram is the variability (or the 
fuzziness of our knowledge) of flows for some materials, and the stability (or more precise 
knowledge) of others. For instance, the production of BF slag appears to be stable at 240 kg per tonne 
of crude steel, in any given plant, whereas the reflow of sinter, an essential aspect in our 
understanding of loops in the production process, varies from 275 to 550 kg per tonne of crude steel, a 
very wide margin indeed, reflecting varying practices in steel plants, but also probably the difficulty 
in tracking such dynamics. Indeed, what comes ‘out’, such as slag, and ends its cycle there (and 
especially more so when it is, such as slag, a valuable and almost readily saleable commodity), is 
easier to account for than materials that ‘pop in’ and ‘pop out’ of a process, with series of losses, 
gains, and combinations that entail complex material changes. Such a complex process is evident in 
the case of the various gases, subsequently transformed in the treatment process into liquids (sludges) 
and solids (dusts, filter cakes). We can expect important losses in such a conversion process, and 
indeed, the figures for the production of these residues vary considerably, emphasizing a sort of fuzzy 
accountability when it comes to unwanted and (up to now at least) unvalued materials that were 
traditionally candidates for a holes-in-the-ground end : thus, the quantities of waste are also a function 
of society’s interest, or lack thereof, in certain materials.  
 

 
Source : Geyer et al, 20073. 

 
 
                                                 
3 Full references are detailed in the references section.  



2nd International Conference on Society & Materials, SAM2, Nantes, 24-25 April 2008 

 
 
c) Flows at UK level in a historical perspective 

 
We now look at things at a higher level, that of the UK steel industry as a whole, and in a historical 
perspective. All the figures are in tonnes. 

 

 
 
 

 
Source : Geyer et al, 2007. 

 
There are two immediate observations that can be made from the comparison of these two diagrams: 
first of all, the strong decrease in total volumes of production (from 24t of steel per year to 15t) and, 
more importantly, the lower losses in the nodes of the production process. Let us look into this point 
in more detail. In the first figure, we have 20+19.6= 39.6t of iron ore and scrap injected into the 
production process, yielding 24.1t of steel. The loss, in tonnes of materials, is about 39%. In the 
second diagram, thrirty years later, we have 10.5+6.6=17.1t of iron ore and scrap yielding 15 tonnes 
of steel. Loss (in this first stage of production) is therefore around 12%, meaning that production 
efficiency, form a material point of view, has increased dramatically, more than threefold to be 
precise. However, when we look at the next stage in the diagram, Fabrication & Mfg, we notice that 
things are not quite the same: whereas the loss in 2000 was around 12%, it was more like 10% in 
1970, meaning that there are (proportionally) more losses now, at this stage of the production, than 30 
years ago, or, at the very least, that there have not been radical improvements in efficiency at this 
stage, especially compared to the preceding one.  
Of course, this is a simplified representation (based on figures that are now almost ten years old), but 
it illustrates an interesting point about the limits to improvement in process efficiency, and invites us 
to reflect on precisely why this is the case: has a theoretical maximum efficiency been reached (such 
as with the BF for instance)? Is it maybe because fabrication and manufacturing are more complex 
operations now than in the past? (i.e. wider variety of steels and finishes, shapes, coatings etc.). At 
any rate, it suggests that there is an amount of nonlinearity in a process as complex and multilayered 
as steelmaking. 
 
Conclusions of part I 

 
We have seen in this section, albeit in a very summarised form, how important it is to visualise the 
prodution of steel as a series of flows and counter-flows. Contrary to the assumed vision of 
production in general whereby materials flow in one direction (from the ‘beginning’ of the process to 
its ‘end’, i.e. finished steel) we see that these flows often form (more or less closed) loops, with 
materials returning to ‘earlier’ stages of production: thus, there is a fair deal of ‘recycling’ in the very 
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literal sense of things being recirculated, in cycles. In that sense, a lot of by-products do not become 
waste. Also, the transformations are numerous and multifaceted, with materials going from solids to 
fluids to gases, with all the transformations and losses attributable to entropy, making it arduous to 
precisely track everything that is going on. However, we can zero in on some specific points of the 
process where some materials end their course, for a variety of reasons, thereby becoming, for all 
intents and purposes, wastes.  
 
PART II: IDENTIFYING AND ANALYSING ‘PROBLEM’ WASTES IN THE INDUSTRY 
 

1.What makes a material ‘problematical’ ?  
 

In this second part, we analyse the factors structuring the way selected wastes are produced, 
conceived, and managed in the UK steel industry today, and how those materials are framed, 
discursively and in practices, as ‘problem’ wastes. We have already seen that many by-products are 
re-used, sometimes almost entirely, in other parts of the process, and are therefore not to be 
considered wastes; the sinter plant is one of the main foci of this recirculation. There have also been 
other developments in this field, such as briquetting, whereby pellets can be produced from various 
dusts and sludges and then be used in the BOS plant both as a raw material and a coolant. Thus, the 
term ‘waste’ is not actually applicable to many substances that were once seen as such, as they are put 
to use either in the production process or in other industries : in other words, materials have a history, 
and in this history, they can flow in and then out of the ‘waste’ category. Thus, few materials can be 
essentialised under a monolithic label of ‘waste’. For instance, it is very significant that, in the 1987 
IISI study4, the only ‘wastes’ studied in the global steel industry were BF and BOS slags, which are 
not particularly difficult, from a material point of view, to deal with, especially since they have many 
commercial applications. The point is reinforced by the fact that BF slag has officially been classified 
very recently by the EU as a by-product, not a waste; this also shows the great inertia in attitudes 
towards what constitutes valuable materials or not. In the 1994 IISI study, the list of wastes was much 
longer, and much more problematical. This study, however, still contained assertions that are 
unacceptable today, such as EAF dust being spread on fields as a ‘zinc supplement’. This shows how 
fast the social, political and economic definitions of waste evolve, although they do not always 
necessarily intersect. The current study carried out by the IISI, due to be published in 2009, takes an 
even bolder and broader perspective, as it strives to analyse the production of steel in a life-cycle 
perspective, i.e. taking into account all the environmental outcomes of the production of the metal5. 
We thus have an example of a gradual broadening of (official) perspectives on waste in the steel 
industry. Some steelmakers are already working on integrating these perpectives in their reports6. 

Many of these by-products do not pose particular problems in terms of recirculation due to their 
material properties: they are carbon or iron rich for instance, with little or no undesirable substances, 
such as zinc or lead, and are not difficult and/or costly to collect and recirculate. Due to the (rising) 
cost of raw materials, it makes sense to try and reduce coke consumption or losses of iron-bearing 
materials, so there are well established patterns for the continuous valorisation of these materials. 
However, as we shall see below, for various reasons, not all materials can be reused: some materials 
are problematical, or, rather, have become so due to a conjunction of political and economic factors 
especially in the last 20 years or so. These problem wastes, and the symbolic, economic, 
environmental, political and social mechanisms and issues they reveal, are at the heart of our research. 
We want to build an understanding of how these materials have been constructed as ‘problematical’, 
in the technological, economic and social context of the UK steel industry, and its current mutations.  

                                                 
4 International Iron & Steel Institute, 1987.  
5 Personal communication. 
6 See for instance, for an idea of the promises and limits of this new discourse, Tata Steel Corporate 
Sustainability Report, 2006. 
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2. Methodology for analysing ‘problem’ wastes 

We now turn to the “problem wastes”, and analyse the factors that make them such, i.e. their material, 
but also social, political and economic genesis. We also look at empirical material showing how these 
wastes are dealt with, practically and symbolically, by the industry, regulators and other industry 
experts ; in other terms, how the approach to these materials is co-produced by a variety of actors. The 
narrowing down to the following list of the vast array of by-products and wastes produced by the steel 
industry is based on interviews with steel company executives and steel industry consultants, as well 
as executives from global waste management companies working for the steel industry. Moreover, 
there is evidence in the literature documenting how problematical these wastes are7.  

One last point to have in mind before looking in detail at the ‘problem’ wastes (or any waste produced 
by the steel industry for that matter) is the extreme variability in the quantities of waste produced, 
sometimes from 1 to 20 or more8, according to the plant and the waste taken into consideration. This 
is due to several factors, including quality and type of raw materials, age and maintenance of plant, 
processes, as well as big differences in legislation (from country to country, but also historically in a 
given country), definition of materials, and in the adoption of new technologies and/or processes. 
Moreover, the use of raw materials and the subsequent production of wastes are nonlinear processes 
(e.g. increased use of raw materials required in blast furnace when materials with high zinc content 
are used). That’s why any understanding of waste in the steel industry will have to be place and time 
based to seize the historical and geographical differences: what is impossible in a given time and 
place may be standard practice at other times and places. However, based on the existing literature9, 
and for the sake of clarity of analysis, we can assume that by-product generation is around 500 kg per 
tonne of steel in the global North (due to multiple pollution abatement apparatuses, which for instance 
transform emissions to the air into solid wastes by scrubbing etc. These wastes would therefore not 
exist without the latter devices but would simply be uncontrolled emissions).  

a) Blast furnace filter cake 

The first ‘problem’ waste we turn to is Blast Furnace Filter Cake (FC). FC results, ultimately, from 
the cleaning of BF off-gases (not the gases from tapping, which are captured in a baghouse and 
recycled to the sinter plant) by water-scrubbing. This sludge contains heavy metals (Pb, Zn, Cd, As) 
and is very alkaline. Due to its high content in heavy metals and water, it is not readily recyclable 
through the production process (sinter plant then BF), notwithstanding its content in carbon and iron 
that makes it potentially re-usable. Zinc in particular is a problem in the BF because it results in extra 
coke consumption and there is also a risk of scaffolding10: Zn evaporates because of the very high 
temperatures, then condenses on the walls of the furnace at lower temperature. The condensed Zn 
prevents the descent of the furnace load, which can lead to its sudden collapse, generating large 
amounts of dust and possible damage to the BF. Moreover, alkaline substances, such as Na and P, can 
have negative repercussions on hot metal properties. 

This waste stream used to be landfilled, but this is now impossible since the ban on liquids going to 
landfills in 2007, and also due to its heavy metal content: the material properties of the waste (both its 
chemical composition and its state, i.e. a liquid) therefore interfere, in the context of a changing 
regime of waste management in the UK, with its traditional fate, landfilling, creating a botlleneck in 
the flow of materials from ‘cradle to grave’. Of the approximately 15,000 tonnes produced every year 
60% is processed internally via the hydrocyclone process followed by the sinter plant, to reclaim Fe 

                                                 
7 See, for instance, Internation Iron and Steel Institute, 1994  
8 IISI 1987 & 1994 studies. 
9 F. Schultmann et al, 2004. 
10 The maximum admissible Zn content per tonne of hot metal in the BF is estimated to be between 0.1 and 0.45 
kg. IISI Study, 1994. More recent studies place it at an average of 120 g/t (0,12 kg). 
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and C units. The remaining 40% is dewatered on plant by a contractor. Dewatering leaves a solid 
residue and a liquid one mainly constituted of water, which is left to settle in lagoons on the site, the 
water then being discharged via the wastewater plant. We thus see that the process of dealing with this 
substance has undergone increasing complexification, from ‘simple’ dumping in holes, to separating 
streams. Things do not stop here, however, as the solid fraction cannot be disposed of to landfill, 
because it is officially classified as hazardous, due to its heavy metal content, but also to naturally-
occurring radioactivity: FC contains Pb-210 and Pl-210, and therefore cannot be reused in the 
production process (BF and/or sinter plant) as this would concentrate radioactivity even more. A 
small fraction, via briquetting and blending with other by-products, can be reused in the BOS plant, 
but the plant operators are unwilling to increase this proportion due to cooling effects. Another issue 
is the fact that, according to the contractor in charge of the briquetting plant, the FC is not sufficiently 
dewatered by the contractor in charge of the latter, meaning that more processing must take place 
before the FC can actually be briquetted. Most of the FC is thus stockpiled on plant. This stockpiling 
is a growing problem, especially at another plant where there are historical, six-figure piles due to the 
absence of landfill availability. Some executives of the company see “the” solution to these stockpiles 
in the Rotary Hearth Furnace process which volatilises the zinc and lead contained in BF filter cake, 
leaving the iron oxide, whilst concentrated Zn and Pb units can be recovered and then sold, however 
more senior managers are not interested in pursuing this avenue, opting for other outlets, such as 
using blast furnace filter cake in the cement industry.  

In this case, we see that it is the change in legislation that, initially, made the waste a ‘problem’, 
because it just used to be dumped before, without any ‘problems’ for anyone : the material just did not 
really appear on anyone’s radar. It was not even the same waste in a certain way, as the dewatering of 
the sludge creates two streams of waste, one solid and one liquid, where there used to be a single 
(liquid) one.  The necessity to deal differently with a substance that used to be ‘simply’ landfilled 
fully reveals the problematical material properties of the filter cake, i.e. its high content in unwanted 
substances, that seem to be revealed by the necessity to dewater it (as an executive puts it, ‘we used to 
have a non-hazardous fluid, now we have two hazardous waste streams’). The steel production 
process, in its present state, cannot cope with this added source of Zn, but not only for material 
reasons : there is a reticence to reorganise production to accommodate this material (in the BOS plant, 
where it would not pose so much of a material problem, but an organisational one, due to a cooling 
effect, instead of the BF), and the industry are therefore stuck with a growing stockpile of the ‘stuff’.  

b) Oily millscale sludge 

The second problem waste is oily millscale sludge. Rolling steel requires the use of oil (to lubricate) 
and water (as a coolant); the two combine with millscale to form a sludge from the oxidation of steel; 
most of this millscale is not contaminated with oil and can be readily recycled to the sinter plant due 
to its high FeOx content. Several thousand tonnes of the oily type are produced every year at the steel 
plant. The sinter plant cannot take this material, although it is rich in iron oxide, because the presence 
of oil would cause a potential fire hazard, on the one hand, and, on the other hand, emissions from the 
sinter plant would be in breach of opacity standards. Various experiments have been carried out to 
remove the oil, such as bio-remediation (also attempted in the USA), or the construction of a 
dedicated solution at another plant, for £3m. The material is also being dewatered, and the solid 
fraction is landfilled. According to an executive, ‘no one has a real solution to this, we’re just making 
it into a non-liquid’ to be able to landfill it. Here again, legislation combines with the material 
properties of the substance to create a ‘problem waste’, although, in this case, the flexibility of the 
definition of a ‘waste’ (and even more so of a ‘hazardous waste’) is illustrated by the fact that this 
substance has gone from hazardous to non hazardous, once again emphasising the fact that the same 
materials can travel through several conceptual categories based on the capacity of the industry to 
negotiate with regulators. 
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c) Electro-static precipitator dust 

The third ‘problem’ waste is Electro-Static precipitator (ESP) dust, from the sinter plant (there is also 
an ESP at the steelplant, but it does not produce any problem wastes). The ESP is the most commonly 
used dust abatement technique. However, the composition of sinter plant dust hinders the optimal 
operation of the ESP : the dust contains heavy metals, is alkaline and radioactive11. Part of it is reused 
in the briquetting plant ,but the contractor are now saying that they have too much ESP dust in their 
mix and so cannot take it all. Part of it can also be re-used in the sinter plant itself (the sinter plant is 
one of the main routes for the recycling of reverts in the steel industry, with up to 85% of all in-plant 
recycling12), however there is a limit to how much the sinter plant can take, as it was not designed 
first and foremost to be a waste disposal route, but part of an integrated steelmaking process. This 
dust is hazardous due to its composition of course, but also its consistency which makes it difficult 
and dangerous to deal with: it is very fine and very dry dust and handling it would require very 
qualified personnel; also, any kind of dust (especially fine) needs to be agglomerated before it can be 
used in any process, adding to the complexity and cost of dealing with waste. This dust is currently 
being stored.  

                                                

d) Lead-containing waste 

Lead-containing steel is used by the automobile industry for its machineability. A lot of the lead is 
lost in the production process: one third is contained in the fumes released during production. These 
fumes are treated via bag filters, which collect high-lead dust (60-70% lead content, 20% of the dust) 
and low-lead dust (around 10% lead content, 80% of the dust). Around 200 tonnes of dust are 
produced per year at the plant studied. This dust is difficult to deal with, firstly because, obviously, it 
is highly toxic, and also because it’s very dry and will not readily dissolve to form a sludge when 
treated with water; instead, it forms little balls that can explode at any time and release the hazardous 
dust, making it hard to handle (v. dewatering BF cake for instance: ‘it’s bog-standard, we can just 
have some chap do it for us’). The low-lead dust used to be landfilled on site, but this is now 
prohibited, and UK hazardous wastes landfill sites are ‘too expensive’. The high-lead dust used to be 
sent to UK-based smelters, which have now closed. It is now being shipped ‘to the Far East’ as this is 
cheaper than landfilling; an alternative solution would be the Minosus salt mine in Cheshire, but this 
is also too expensive ; however this solution will be considered if the cost goes down. Here, we see 
that a combination of legal and economic factors contribute to placing the lead-containing waste in an 
international political economy of waste, as it is cheaper to ship ‘to the Far East’ than landfill it in the 
UK in specialised landfills. Moreover, the domestic industry that used to handle this waste has shut 
down, illustrating the reliance on international circuits to deal with waste. Another aspect of the 
question is that, in practical terms, more lead-containing dust could be recycled on plant, but this 
would imply some organisational changes. The company currently prefers to concentrate on its ‘core 
job’ in an effort to cut costs, which can be witnessed in the use of contractors for more and more 
operations, and the subdivision of activities among several contractors to drive prices down. However, 
the company loses out on the recovery of some materials, or just ends up stockpiling them.  

e) Dust from electric arc furnaces (EAF).  

This is generated during the production of steel in EAF plants. About 15,000 tonnes are produced per 
year. The dust is captured in filters in baghouses. The problem with this dust, once again, is its Zn 
content. It could be landfilled until 2005, when this practice was banned. Attempts to use this dust in 
the briquetting plant after concentration have proven uneconomical : Zinc smelters consistently try to 
get a higher zinc content while demanding to pay less, or even to be paid, to take the dust… so this 

 
11 The radioactivity of sinter plant emissions was first identified in the Netherlands, and derives from the 
presence of trace amounts of uranium and thorium, and their decay products in the iron ores and coals used for 
ironmaking. The main isotopes emitted during sintering are lead-210 and polonium-210, which become 
concentrated in the waste gas.  
12 IISI seminar on sinter & pellets, 1999 
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dust is shipped abroad, originally to Germany, and now to Italy to be used in the production of cement 
(this is pretty standard practice in the industry13). Once again, we see the international circuits of 
waste, and how they can be mobilised by the domestic steel industry to, in a way, evade costly 
domestic regulations, and also deal with materials for which there is no infrastructure in the country 
of origin because the smelters have shut down. 

CONCLUSIONS 

We thus see that many factors preclude the optimal reuse of various by-products arising during 
production. These by-products thus become wastes, materials with no obvious applications, and they 
are also a liability. They all require relatively costly and time-consuming pretreatment to be reused in 
the integrated processes (sinter plant, BF and BOS) and/or contain unwanted substances such as zinc 
and other heavy metals that can hinder the process and affect product quality. Also, the physical 
characteristics of the wastes (oily sludge or very fine-grained material) can preclude their reuse. All in 
all, this illustrates the fact that the components of the steel plant are designed primarily to produce 
steel, and not to recycle wastes: there are limits to how much of these wastes they can handle, and 
only materials containaing desirable substances (FeOx, C, fluxes…) are readily recyclable. This 
makes the idea of separate waste processing routes14 , such as the Midrex RHF process or variants of 
it, potentially appealing, but there is considerable disagreement in the company, especially at senior 
management levels, where this is seen as non-core business.  

 However, more than the availability and cost of technology, problems surrounding these materials 
also come down to organisational issues, such as the resistance to using more briquettes, or the 
selection of inadapted processes by contractors who are often asked to manage more and more by-
products at an ever lower cost. Ultimately, though, as suggested by an executive of a waste 
management company working for the steel industry, it may all come down to ‘window dressing’ on 
the part of steelmakers, who give the impression they are concerned with managing by-products, by 
commissionning a briquetting plant for instance, when they are actually just biding their time. Indeed, 
one of the plants investigated wasn’t actually using its briquettes, due to their higher cooling effect 
when compared to scrap, although they are cheaper. Thus, the briquettes are just piling up, posing the 
question of whether there is any real commitment to reusinf the materials in question, and at any rate 
leading to the loss of recoverable materials. The company prefered to pay third parties to take these 
materials and ship them abroad, and recover the values themselves, than modify some of its processes 
to accommodate these materials. 

It is thus clear that social sciences have something to say, as all is not down to technology, but also to 
the way it is integrated (or not) into organisational routines, on the one hand, and what the strategies 
behind the use of these technologies are, on the other : indeed, a technology may be implemented to 
be used in an unexpected way, such as -in a hypothetical case- a briquetting plant giving the 
appearance of concern for the reuse of materials, but actually used more as a diversion. Likewise, 
issues of knowledge building, codification and transfer between companies or even divisions of a 
given company, and between companies and contractors, are also socially constructed. Therefore, the 
steel industry can be taken as an exemplar of the necessity for social sciences and industry to 
collaborate more often and on a wider array of topics. 
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